Optics Express Pre-Print Electrically pumped hybrid AlGaInAs-silicon evanescent laser
نویسندگان
چکیده
An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 °C. This approach allows for 100’s of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors. ©2005 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (250.5300) Photonic integrated circuits. References and links 1. Reed, G. T. The optical age of silicon. Nature 427, 615−618 (2004). 2. Reed, G. T. & Knights, A. P. Silicon Photonics: An Introduction (John Wiley, Chichester, West Sussex, 2004). 3. Pavesi, L. & Lockwood, D. J. (eds.) Silicon Photonics, (Springer-Verlag, Berlin, 2004). 4. Miller, D. A. B. Optical interconnects to silicon. IEEE J. Sel. Top. Quant. Electron. 6, 1312−1317 (2000). 5. Jacobsen, R. S., Strained silicon as a new electro-optic material, Nature 441, 199-202 (2006) 6. Almeida, V. R., Barrios, C. A., Panepucci, R. R., Lipson, M., All-optical control of light on a silicon chip, Nature 431, 1081-1084 (2004) 7. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725-728 (2005). 8. Boyraz, O. & Jalali, B., Demonstration of a silicon Raman laser, Opt. Express 12, 5269, (2004). 9. Espinola, R., Dadap, J., Osgood, Jr., R., McNab, S., & Vlasov, Y., Raman amplification in ultrasmall silicon-oninsulator wire waveguides, Opt. Express 12, 3713-3718 (2004) 10. Cloutier, S. G., Kossyrev, P. A., & Xu, J., Optical gain & stimulated emission in periodic nanopatterned crystalline silicon, Nature Materials 4, 887, (2005). 11. Pavesi, L., Dal Negro L., Mazzoleni, C., Franzò, G., & Priolo, F., Optical gain in silicon nanocrystals, Nature 408, 440–444 (2000). 12. Irrera, A. et al., Electroluminescence properties of light emitting devices based on silicon nanocrystals, Physica E 16, 395-399 (2003). 13. B. Gelloz and N. Koshida, Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode, J. Appl. Phys. 88, 4319-4324 (2000). 14. Lombardo, S. et al. A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon, Appl. Phys. Lett. 63, 1942–1944 (1993). 15. Kato, K., & Tohmori, Y., PLC Hybrid Integration Technology and Its Application to Photonic Components, IEEE J. Sel. Topics Quantum Electron 6, 4-13 (2000) 16. Friedrich, E.L., Oberg, M.G., Broberg, B., Nilsson, S., & Valette, S., Hybrid Integration of Semiconductor Lasers with Si-Based Single-Mode Ridge Waveguides, Journal of Lightwave Technology 10, 336-340 (1992) Optics Express Pre-Print 17. Sasaki, J. et al. Multiple-Chip Precise Self-Aligned Assembly for Hybrid Integrated Optical Modules Using Au– Sn Solder Bumps, IEEE Transactions on Advanced Packaging 24, 569-575 (2001) 18. Monat, C. et al., “InP membrane-based microlasers on silicon wafer: microdisks vs. photonic crystal cavities, Conference Proceedings to the 2001Internation Conference on Indium Phosphide Materials FA24, 603-606 (2001) 19. S. Mino et al. Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration, J. Light. Tech. 13, 2320 (1995) 20. Hattori, H. T. et al., Heterogeneous Integration of Microdisk Lasers on Silicon Strip Waveguides for Optical Interconnects, IEEE Photon. Technol. Lett. 18, 223-225 (2006) 21. Park, H., Fang, A. W., Kodama, S., & Bowers, J. E., Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells, Opt. Express 13, 9460-9464 (2005) 22. Karim, A. et al. Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation, IEEE Photon. Technol. Lett. 12, 1438, (2000). 23. Pasquariello, D. et al. Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding, IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002). 24. Boudinov, H., Tan, H. H., & Jagadish. C., Electrical isolation of n-type and p-type InP layers by proton bombardment, Journal of Applied Physics. 89-10, pp. 5343-5347, (2001) 25. Hakki, B. W., & Paoli, T. L., CW degradation at 300K of GaAs double-heterostructure junction lasers –II: Electronic gain, J. Appl. Phys. 44 , 4113-4119 (1973) 26. Margalit, N., High-Temperature Long-Wavelength Vertical-Cavity Lasers, Ph.D. Thesis, University of California Santa Barbara, (1998). 27. Ramaswamy, R., Sivarajan, K. N., Optical networks: a practical perspective, (Academic Press, San Francisco, 2002) 28. Marsh, J. H. & Bryce, A. C., Fabrication of photonic integrated circuits using quantum well intermixing, Mater. Sci. Eng. B, 24, pp. 272–278, (1994). 29. Geske, J., Jayaraman, V., Okuno, Y. L., & Bowers, J. E., Vertical and lateral heterogeneous integration, Appl. Phys. Lett. 79, 1760-2, (2001)
منابع مشابه
Electrically pumped hybrid AlGaInAs-silicon evanescent laser.
An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave...
متن کاملContinuous-Wave Electrically Pumped Hybrid Silicon Evanescent Laser
We demonstrate an electrically pumped silicon evanescent laser incorporating AlGaInAs quantum wells with a silicon waveguide. The device operates continuous wave with a threshold of 65 mA and a fiber coupled output power of 1.8 mW.
متن کاملIntegrated AlGaInAs-silicon evanescent race track laser and photodetector.
Here we report a racetrack resonator laser integrated with two photo-detectors on the hybrid AlGaInAs-silicon evanescent device platform. Unlike previous demonstrations of hybrid AlGaInAs-silicon evanescent lasers, we demonstrate an on-chip racetrack resonator laser that does not rely on facet polishing and dicing in order to define the laser cavity. The laser runs continuous-wave (c.w.) at 159...
متن کامل40 °C Continuous-Wave Electrically Pumped Hybrid Silicon Evanescent Laser
We demonstrate an electrically pumped silicon evanescent laser incorporating AlGaInAs quantum wells with a silicon waveguide. The device operates continuous wave with a threshold of 65 mA and a fiber coupled output power of 1.8 mW.
متن کاملHybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells.
A novel laser that utilizes a silicon waveguide bonded to AlGaInAs quantum wells is demonstrated. This wafer scale fabrication approach allows the optical waveguide to be defined by CMOS-compatible silicon processing while optical gain is provided by III-V materials. The AlGaInAs quantum well structure is bonded to the silicon wafer using low temperature oxygen plasma-assisted wafer bonding. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006